
1

Minimum Spanning Trees
It is a subgraph of Graph such that it covers all the vetex and must not contain

any cycle

2

Problem: Laying Telephone Wire

Central office

3

Wiring: Naïve Approach

Central office

Expensive!

4

Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers

5

Minimum Spanning Tree (MST)

• it is a tree (i.e., it is acyclic)

• it covers all the vertices V

– contains |V| - 1 edges

• the total cost associated with tree edges is the

minimum among all possible spanning trees

• not necessarily unique

A minimum spanning tree is a subgraph of an
undirected weighted graph G, such that

7

How Can We Generate a MST?

a

c
e

d

b
2

4 5

9

6

4

5

5

a

c
e

d

b
2

4 5

9

6

4

5

5

8

Prim’s Algorithm

Initialization

 a. Pick a vertex r to be the root

 b. Set D(r) = 0, parent(r) = null

 c. For all vertices v  V, v  r, set D(v) = 

 d. Insert all vertices into priority queue P,

 using distances as the keys

a

c
e

d

b
2

4 5

9

6

4

5

5

e a b c d

0    

Vertex Parent

 e -

9

Prim’s Algorithm
While P is not empty:

 1. Select the next vertex u to add to the tree

 u = P.deleteMin()

 2. Update the weight of each vertex w adjacent to

 u which is not in the tree (i.e., w  P)

 If weight(u,w) < D(w),
 a. parent(w) = u

 b. D(w) = weight(u,w)
 c. Update the priority queue to reflect
 new distance for w

10

Prim’s algorithm

a

c
e

d

b
2

4 5

9

6

4

5

5

d b c a

4 5 5 

Vertex Parent

 e -

 b e

 c e

 d e

The MST initially consists of the vertex e, and we update

the distances and parent for its adjacent vertices

Vertex Parent

 e -

 b -

 c -

 d -

d b c a

   

e

0

11

Prim’s algorithm

a

c
e

d

b
2

4 5

9

6

4

5

5

a c b

2 4 5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

d b c a

4 5 5 

Vertex Parent

 e -

 b e

 c e

 d e

12

Prim’s algorithm

a

c
e

d

b
2

4 5

9

6

4

5

5

c b

4 5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

a c b

2 4 5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

13

Prim’s algorithm

a

c
e

d

b
2

4 5

9

6

4

5

5

b

5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

c b

4 5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

14

Prim’s algorithm

Vertex Parent

 e -

 b e

 c d

 d e

 a d

a

c
e

d

b
2

4 5

9

6

4

5

5

The final minimum spanning tree

b

5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

15

Running time of Prim’s algorithm
(without heaps)

Initialization of priority queue (array): O(|V|)

Update loop: |V| calls

• Choosing vertex with minimum cost edge: O(|V|)

• Updating distance values of unconnected

vertices: each edge is considered only once

during entire execution, for a total of O(|E|)

updates

Overall cost without heaps:

When heaps are used, apply same analysis as for
Dijkstra’s algorithm (p.469) (good exercise)

O(|E| + |V| 2)

16

Prim’s Algorithm Invariant

• At each step, we add the edge (u,v) s.t. the weight of
(u,v) is minimum among all edges where u is in the
tree and v is not in the tree

• Each step maintains a minimum spanning tree of the
vertices that have been included thus far

• When all vertices have been included, we have a MST
for the graph!

17

Correctness of Prim’s
• This algorithm adds n-1 edges without creating a cycle, so

clearly it creates a spanning tree of any connected graph
(you should be able to prove this).

But is this a minimum spanning tree?

Suppose it wasn't.

• There must be point at which it fails, and in particular
there must a single edge whose insertion first prevented
the spanning tree from being a minimum spanning tree.

18

Correctness of Prim’s

• Let V' be the vertices incident with edges in S

• Let T be a MST of G containing all edges in S, but not (x,y).

• Let G be a connected,

undirected graph

• Let S be the set of

edges chosen by Prim’s

algorithm before

choosing an errorful

edge (x,y)

x

y

19

Correctness of Prim’s

x

y

v

w

• There is exactly one edge on this cycle with exactly
one vertex in V’, call this edge (v,w)

• Edge (x,y) is not in T, so
there must be a path in
T from x to y since T is
connected.

• Inserting edge (x,y) into
T will create a cycle

20

Correctness of Prim’s

• Since Prim’s chose (x,y) over (v,w), w(v,w) >= w(x,y).

• We could form a new spanning tree T’ by swapping (x,y) for
(v,w) in T (prove this is a spanning tree).

• w(T’) is clearly no greater than w(T)

• But that means T’ is a MST

• And yet it contains all the edges in S, and also (x,y)

 ...Contradiction

21

Another Approach

a

c
e

d

b
2

4 5

9

6

4

5

5

• Create a forest of trees from the vertices

• Repeatedly merge trees by adding “safe edges”

until only one tree remains

• A “safe edge” is an edge of minimum weight which

does not create a cycle

forest: {a}, {b}, {c}, {d}, {e}

22

Correctness of Kruskal’s

• Inserting edge e into T will create a cycle

• There must be an edge on this cycle which is not in K (why??).
Call this edge e’

• e’ must be in T - S, so (by our lemma) w(e’) >= w(e)

• We could form a new spanning tree T’ by swapping e for e’ in
T (prove this is a spanning tree).

• w(T’) is clearly no greater than w(T)

• But that means T’ is a MST

• And yet it contains all the edges in S, and also e

 ...Contradiction

23

Greedy Approach

• Like Dijkstra’s algorithm, both Prim’s and Kruskal’s
algorithms are greedy algorithms

• The greedy approach works for the MST problem;
however, it does not work for many other problems!

