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Minimum Spanning Trees 
It is a subgraph of Graph such that it covers all the vetex and must not contain 

any cycle 
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Problem: Laying Telephone Wire 

Central office 
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Wiring: Naïve Approach 

Central office 

Expensive! 
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Wiring: Better Approach 

Central office 

Minimize the total length of wire connecting the customers 
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Minimum Spanning Tree (MST) 

• it is a tree (i.e., it is acyclic) 

• it covers all the vertices V 

– contains |V| - 1 edges 

• the total cost associated with tree edges is the 

minimum among all possible spanning trees 

• not necessarily unique 

A minimum spanning tree is a subgraph of an 
undirected weighted graph G, such that 
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How Can We Generate a MST?  
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Prim’s Algorithm 

Initialization 

 a. Pick a vertex r to be the root 

  b. Set D(r) = 0, parent(r) = null 

 c. For all vertices v  V, v  r, set D(v) =  

 d. Insert all vertices into priority queue P,  

     using distances as the keys 
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Prim’s Algorithm 
While P is not empty: 

 
 1. Select the next vertex u to add to the tree 

   u = P.deleteMin() 
 
 2. Update the weight of each vertex w adjacent to 

  u which is not in the tree (i.e., w  P) 

    If weight(u,w) < D(w), 
    a. parent(w) = u 

      b. D(w) = weight(u,w) 
    c. Update the priority queue to reflect  
          new distance for w 
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Prim’s algorithm 
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The MST initially consists of the vertex e, and we update 

the distances and parent for its adjacent vertices 
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Prim’s algorithm 
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Prim’s algorithm 
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Prim’s algorithm 
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Prim’s algorithm 
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Running time of Prim’s algorithm 
(without heaps) 

Initialization of priority queue (array): O(|V|) 

 

Update loop:  |V| calls 

• Choosing vertex with minimum cost edge: O(|V|) 

• Updating distance values of unconnected 

vertices: each edge is considered only once 

during entire execution, for a total of O(|E|) 

updates     

Overall cost without heaps: 

 
When heaps are used, apply same analysis as for 
Dijkstra’s algorithm (p.469) (good exercise) 

 

O(|E| + |V| 2) 
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Prim’s Algorithm Invariant 

• At each step, we add the edge (u,v) s.t. the weight of 
(u,v) is minimum among all edges where u is in the 
tree and v is not in the tree 

 

• Each step maintains a minimum spanning tree of the 
vertices that have been included thus far 

 

• When all vertices have been included, we have a MST 
for the graph! 
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Correctness of Prim’s 
• This algorithm adds n-1 edges without creating a cycle, so 

clearly it creates a spanning tree of any connected graph 
(you should be able to prove this).  

 

But is this a minimum spanning tree?  

Suppose it wasn't.  

 

• There must be point at which it fails, and in particular 
there must a single edge whose insertion first prevented 
the spanning tree from being a minimum spanning tree.  
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Correctness of Prim’s 

 

• Let V' be the vertices incident with edges in S  

• Let T be a MST of G containing all edges in S, but not (x,y).  

 

• Let G be a connected, 

undirected graph 

• Let S be the set of 

edges chosen by Prim’s 

algorithm before 

choosing an errorful 

edge (x,y) 
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Correctness of Prim’s 
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• There is exactly one edge on this cycle with exactly 
one vertex in V’, call this edge (v,w)  

• Edge (x,y) is not in T, so 
there must be a path in 
T from x to y since T is 
connected.  

• Inserting edge (x,y) into 
T will create a cycle  
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Correctness of Prim’s 

• Since Prim’s chose (x,y) over (v,w), w(v,w) >= w(x,y).  

• We could form a new spanning tree T’ by swapping (x,y) for 
(v,w) in T (prove this is a spanning tree).  

• w(T’) is clearly no greater than w(T) 

• But that means T’ is a MST 

• And yet it contains all the edges in S, and also (x,y)  

 

                                                         ...Contradiction 
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Another Approach 
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• Create a forest of trees from the vertices 

• Repeatedly merge trees by adding “safe edges” 

until only one tree remains 

• A “safe edge” is an edge of minimum weight which 

does not create a cycle 

forest: {a}, {b}, {c}, {d}, {e} 
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Correctness of Kruskal’s 

• Inserting edge e into T will create a cycle  

• There must be an edge on this cycle which is not in K (why??).  
Call this edge e’ 

• e’ must be in T - S, so (by our lemma) w(e’) >= w(e) 

• We could form a new spanning tree T’ by swapping e for e’ in 
T (prove this is a spanning tree).  

• w(T’) is clearly no greater than w(T) 

• But that means T’ is a MST 

• And yet it contains all the edges in S, and also e  

                                                         ...Contradiction 
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Greedy Approach 

• Like Dijkstra’s algorithm, both Prim’s and Kruskal’s 
algorithms are greedy algorithms 

 

• The greedy approach works for the MST problem; 
however, it does not work for many other problems! 

 


